
Lab-Report
Microprocessors

Digital Voltage Meter (DVM)

Name: Dirk Becker
Course: BEng 2
Group: A
Student No.: 9801351
Date: 05/May/1999

�
N O

Y E S

Page 2 of 15

1. Contents

1. CONTENTS...2

2. INTRODUCTION ...3

3. THE PROJECT ...3

4. THE MAIN PROGRAM ..4

5. THE LAB ...5

A) M ILESTONE 1 – READ FROM ADC AND WRITE TO DAC..5
i. Read from A/D converter.. 5
ii. Write to D/A converter.. 6
iii. AD and DA converter characteristics 6

B) M ILESTONE 2 – 500MS TIMING LOOP...7
C) M ILESTONE 3 – SCALING TO 3 DIGIT ASCII ..9
D) M ILESTONE 4 – OUTPUT TO LC DISPLAY ..10

6. CONCLUSION..11

7. APPENDIX ..12

E) THE COMPLETE CODE ..12

Page 3 of 15

2. Introduction

Microelectronics is increasingly pervading all aspects of industry, education and the home. A
leading example of microelectronic techniques is the microprocessor, and as its use increases
the need for knowledge and understanding will also grow.
The microprocessor lab was designed to give an overview over the programming of such a
microprocessor system. Therefor a Digital Voltage Meter was to implement on the UELMON
51.

3. The Project

With the UELMON system a digital voltmeter with the following specifications was to
implement:

♦ Input Voltage Range: 0..5 Volts
♦ Display: 2½ digits
♦ Refresh Rate: 500ms +/- 1ms

The project was divided into 5 different sections (Milestones). These sections were as
follows:

Section 1
Read data from AD converter and write it to DA for determination of dynamic range and I/P -
O/P relationship of the DA and AD.

Section 2

Implement a 500ms timing loop, for reducing the sample rate to
s

2
 (2 samples per second).

Section 3
Convert the hexadecimal data from the AD converter to 3 ASCII digits.

Section 4
Write the converted ASCII data to the LCD.

Section 5
Refinements.

Page 4 of 15

4. The Main program

First an overall flowchart of the voltmeter program was developed. It puts the different task
into a chronological order. First the applied voltage has to be converted to a digital value and
written to the DAC. Then the hexadecimal ADC value has to be converted to a 3 digit ASCII,
which can be written to the LC-Display. Then the program has to wait until the 500ms are
finished. Therefore the timer has to be started before reading from the ADC.
Figure 1 shows the resulting flowchart.

Get ADC Input

Convert Hex ADC
I/P to Decimal

(Scaling)

Display Voltage on
LC-Display

Wait unti l t imer has
reached 500ms

Wri te to DAC

lcall getadc

lcall wrtdac

lcall convert

lcall display

lcall waitfiv

Init / Start

figure 1 - The main program (Overall flowchart)

Page 5 of 15

5. The Lab

a) Milestone 1 – Read from ADC and wr ite to DAC

First section of the Lab was to implement a short program, which was able to read the content
of the Analogue to Digital Converter and write it to the Digital to Analogue Converter.
The I/P value was always printed on the screen via the pint8u function of the UELMON.
Pint8u prints automatically the actual content of the Accumulator to the serial interface as a
decimal number (0..255).
Later the program was divided into the subroutines GETADC and WRTDAC, which are
called from the main program.

 i. Read from A/D conver ter

Figure 2 shows the flowchart for the subroutine, which reads from the ADC and writes it to
the Accumulator.
The resulting code is shown on the right hand side of the flowchart.
The A/D has to be started by writing a dummy value to it, and then the program wait until the
conversion is done and writes the resulting value to the Accu.

Init ialise AD-
Converter

Load converted
value to Accu

YES

MOV DPTR, #A_D
MOV a, #0
MOVX @DPTR, a

WAIT:
JB P3.2, WAIT

MOVX a , @DPTR

RET

Subroutine
GetADC

Return to main

EOC?

N O

figure 2 - Subroutine GetADC

Page 6 of 15

 ii . Write to D/A conver ter

As a next part of the first section the read value of the A/D had to be written to the D/A
converter and the characteristics of both were to be obtained.

 iii . AD and DA converter character istics

Input to ADC/V Screen Out (Dec -
0..255)

Output of DA/V

0 0 0
0.1 1 0.01
0.3 16 0.16
1 52 0.52
2 104 1.04
3 156 1.56
4 207/208 2.07
4.90 254 2.54
4.91 254/255 2.55
4.92 255 2.55

From this table the characteristics of the ADC and DAC can be obtained:

ADC:

)20mV

255dec. 4.92V-

254dec. 4.90V(

mV10
2

solutionRe
erroronQuantisati

V92.4..0:RangemV20
stepsize

Voltage.max
solutionRe

=
⇒
⇒

==

==

Write Accu to
DAC

MOV DPTR, #D_A
MOVX @DPTR, a

RET

Subroutine
W R T D A C

Return to main

figure 3 – Subroutine Writ to DAC

Page 7 of 15

DAC:

mV5
2

sRe
Q

mV10
255

2.55V
 Resolution 0..2.55V

0..2.55V) :(Range 255..0

Err ==

=⇒

b) Milestone 2 – 500ms timing loop

For sampling the incoming voltage with a sampling rate of ½ second the program must
provide a timer, which is started before reading from the ADC and halts the program, until
500ms are done and the next input value can be read.
The 500ms timing loop consists of a) The ISR (Figure 4) and b) an external counter routine
(Figure 5).
The timer is started before the ADC starts to work and is preloaded with a defined value. If
the timer overflows the 8051 generates an interrupt, which forces the program to continue at
the address of the interrupt vector (UELMON=080b). With every overflow a second variable
(n) is decremented and the timer again set to the defined value. When the helping counter n
has reached 0, the program starts continuing at the beginning.

Set new Timer
value

Decrement
overf low counter

(n)

RETI

mov th0, #prehigh
mov t l0, #prelow

dec n

Start t imer again setb tr0

ISR (Interrupt
Service Routine)

Return to main

figure 4 - ISR

Page 8 of 15

The overflow counter routine is called at the end of the main program in order to secure a
proper timing.

Calculation of the Timer preset-value:

The Timer counts without preset from 0 up to 65535 and generates then an interrupt. For
these 65535 counts the timer needs about 65ms, which means for a delay of 500ms the timer

has to be restarted 69.7
ms65

ms500 = times to provide 500ms delay.

Also the timer can be restarted 8 times, but then it must be presetted by a value, to do the
same timing (500ms). Therefore the timer has not to start with 0, because the timing loop
would increase 500ms (8*65ms= 520ms).

Hence the counter only should count 63015
8

655366923.7 =×
 turns.

Proof:

counting62500..0:0TMR

ms500ms5.628

ms504ms015.638

⇓
=×

⇓
=×

but TMR0 counts up – Hence 65536-62500=(3036)10

(3036)10=$0BDC ⇒ $0B=Highbyte and $DC=Lowbyte of TMR0

RET

Overfglow
counter n=0?

N O

YES

waitfiv:
mov a, n
cjne a, #0, waitf iv

Subroutine
Waitf iv

Return to main

figure 5 - Overflow counter routine

Page 9 of 15

c) Milestone 3 – Scaling to 3 digit ASCII

The LC-Display needs a 3 digit value in ASCII format to work correct. So the HEX value
coming from the ADC must be converted (scaled) in an appropriate way.

Figure 6 shows the flowchart of the scaling procedure. The different digits are stored in the
registers R1..R3.

Calculate MSD by
dividing accu 50

Convert to ASCII
and store in R1

Calculate 1/10
Volts by dividing
remainder by 5

Convert to ASCII
and store in R2

Calculate 1/100
Volts by mult iplying

remainder by 2

Convert to ASCII
and store in R3

RET

mov b, #50
div ab

mov a, b
mov b, #5
div ab

add a, #30
mov r1, a

add a, #30
mov r2, a

add a, #30
mov r3, a

mov a, b
rl a

Subroutine
CONVERT (Hex
already in Accu)

Return to main

figure 6

Page 10 of 15

d) Milestone 4 – Output to LC Display

The last part of the lab (Milestone 4) was to display the contents of the internal register
R1..R3 of the 8051 in a “Voltage meter” appropriate form. The initialisation routine for the
display was copied from the Lab-examples, because of the lack of documentation on the
LCD.
The LC-Display is controlled serial by port 3 of the 8255 and the LCD data are applied via
port 2 of the 8355. To obtain a proper work of the display it has to be initialised in a special
way (subroutine INITL).

Move cursor to mid
posit ion, l ine 2

Display Volts

Display ' . ' (Dot)

Display 1/10 Volts

Display 1/100 Volts

Display 'V' for Volts

RET

mov a, #$C5
lcall lcset

mov a, ' . '
lcall lcdisp

mov a, r1
lcall lcdisp

mov a, r2
lcall lcdisp

mov a, 'V'
lcall lcdisp

mov a, r3
lcall lcdisp

Subrout ine
Display

Return to main

figure 7 - Subroutine Display

Page 11 of 15

Figure 7 shows the subroutine to display the stored data on the LC-Display. First the cursor is
moved to a mid position in the second row via the LCSET function, and then the registers are
output in the format #.##V, li ke on a usual DVM.

6. Conclusion

The UELMON is a mighty tool to develop and test programs for the Intel 8051 processor.
After assembling and simulating the code it can be direct downloaded and tested on the
UELMON. With its implemented routines for accessing the serial port debugging and error
searching is made very easy.
It is very important to use a simulator for developing assembler code, because otherwise some
errors can’ t be found.
In a time, where microprocessors become more and more important and are in use in every
day’s li fe every engineer should be able to use them, because of their high flexibili ty.

Dirk Becker, dirk.becker@gmx.de, www.oldradio.home.pages.de

Page 12 of 15

7. Appendix

e) The complete code

; Read ADC Input
; Write it to serial and DAC, with a sampling rate of 1/2 second
; and convert it to decimals
;
; Dirk Becker, 9801351, >= 1-MAR-1999
;
;

 .EQU A_D,$E000 ; Set address of AD Converter
 .EQU D_A,$C000 ; Set address of DA Converter
 .EQU pint8u,$004D ; Set address of print ACC to serial
 .EQU newline,$0048 ; Set address off serial CR/LF
 . equ prelow, $dc ; Preload TMR0 LowByte
 . equ prehigh, $0b ; Preload TME0 HighByte
 . equ n, $30 ; Overflow counter
 . equ p8255, $4000 ; Address of the Port-Interface 8255

 .org $8000
 ljmp init

 .org $800b ; ISR Start vector
isr: mov th0, # prehigh ; Presets TMR0 High
 mov tl0, # prelow ; and low byte
 setb tr0 ; Starts TMR0 again
 dec n ; Decrement helping counter
 reti ; back and wait for next interrupt

init:

 setb ea ; Enable interupts
 setb et0 ; with TMR0 overflow interrupt
 mov a, tmod ; (TMR1 must
 anl a,#$f0 ; not be
 orl a,#$01 ; changed)
 mov tmod, a ; and set to 16-Bit Counter mode

 lcall initl ; Call LCD - Init

START:

 mov th0, # prehigh ; Presets TMR0 High
 mov tl0, # prelow ; and low byte
 setb tr0 ; Starts TMR0
 mov n, #8 ; Set helping counter n to 8
 lcall getadc ; Read ADC
 lcall wrtdac ; write it to DAC
 lcall convert ; convert it to ascii
 lcall display ; and print it on the LCD
 lcall waitfiv ; wait until 500ms are done

 LJMP start ; Goto Start – forever

Page 13 of 15

; **
; * Subroutine GETADC *
; * Reads content from ADC and writes it to the accu *
; **
getadc: MOV DPTR, #A_D ; Set Datapointer to Adress of ADC
 MOV A, #0 ; Load #0 to Acc
 MOVX @DPTR, A ; load Acc to Address of ADC
WAIT: JB P3.2, WAIT ; Wait until End of Conversion (Port3,
Pin2)
 MOVX A, @DPTR ; Load Result to Acc
 ; LCALL pint8u ; Print content of ACC to serial
 ; LCALL newline ; Send CR/LF to serial
 ret

; **
; * Subroutine WRTDAC *
; * Reads content from accu and writes it to the DAC *
; **
wrtdac: MOV DPTR, #D_A ; Set Datapointer to Address of DAC
 MOVX @DPTR, A ; Move Content of Acc to DAC for Output
 ret

; **
; * Subroutine WAIT *
; * Waits until 500ms are done *
; **
waitfiv: mov a, n
 cjne a, #0, waitfiv ; are 500ms
 ret ; done? - go back

; **
; * Subroutine Convert *
; * Converts the accu into decimals and stores the *
; * results int r1, r2 and r3 (MSB ... LSB) *
; **
convert: mov b, #50 ; divide Accu
 div ab ; by 50 - Remainder to register B
 add a, #$30 ; convert accu to ASCII
 mov r1, a ; and store it to R1 --> Volts
 ;LCALL pint8u ; Print content of ACC to serial

 mov a, b ; divide remainder
 mov b, #5 ; by 5
 div ab
 add a, #$30 ; convert accu to ASCII
 mov r2, a ; store it in R2 --> 1/10 Volts
 ;LCALL pint8u ; Print content of ACC to serial

 mov a, b ; Multiply remainder
 rl a ; by 2 --> 1/100 Volts
 add a, #$30 ; convert accu to ASCII
 mov r3, a
 ;LCALL pint8u ; Print content of ACC to serial
 ; lcall newline
 ret ; done? - go back

Page 14 of 15

; **
; * Subroutine Display *
; * Prints the content or R1 .. R3 to the LCD *
; **
display:
 mov a, #$C5
 lcall lcset

 mov a, r1
 lcall lcdisp

 mov a,#'.'
 lcall lcdisp

 mov a, r2
 lcall lcdisp

 mov a, r3
 lcall lcdisp

 mov a,#'V'
 lcall lcdisp

 ret

;***
; initialisation of LCD *
;***

initl:
 mov dptr,#P8255+3 ;8255 setup register
 mov a,#80h
 movx @dptr,a ;port C is o/p
 mov dptr,#setlcd
init1:
 mov a,#0
 movc a,@a+dptr
 CJNE A,#0,init2
 ret
init2:
 inc dptr
 lcall LCset
 ljmp init1

Page 15 of 15

;**
; LCD write routines. LCdisp sends the (ASCII) char contained in A. *
; LCset sends the command contained in A *
; Note - The DPTR is preserved *
;**

lcdisp:
 setb p1.5 ; setup for data
 ajmp sendit
LCset:
 clr p1.5 ; setup for command
sendit:
 push dpl
 push dph
 mov dptr,#P8255+2 ;address of 8255 port c
 movx @dptr,a ;send data to 8255
 clr p1.6 ;write enabled
 nop
 nop
 nop
 setb p1.7 ;clock the data
 nop
 nop
 nop
 acall delay
 clr p1.7
 setb p1.6
 acall delay
 pop dph ;restore dptr, Note: last in
 pop dpl ;is first out when using the stack
 ret

delay: mov r0,#0FFh
 djnz r0,*
 ret
;***
setlcd:
 . db $3C,$06,$0E,$01,$81,$81,$00

 .end

