L ab-Report
Microprocessrs

Digital Voltage Meter (DVM)

Name: Dirk Becker
Course: BENng 2 L
Group A

Student No.: 9801351 UNIVERSITY of
Date: 05May/1999 EAST LONDON

1. Contents

1

2.

3.

4,

5.

(OO TV I =N 15 TR 2
INTRODUGCTION ..t eeeee et e ettt et e eea e s et e e e eab e eaeaaa e s st e e taeessaanesesansesetasssnnnsees 3
LI L= O N 1 L O T 3
THE MAIN PROGRAM .ottt e e s e e et e e ea s e e et s e e sanrennsesernseennn e B
LI N = T TR 5
A) MILESTONE 1 —READ FROM ADC AND WRITE TODAC......ci ittt 5
[T S 1o R WV Do) 11V/= (< R 5
[T oY L (SR (o3 BN o0 0\ =l (= (O RR 6
. AD and DA CONVEI e CharACEIIStICS. ... uvieeiirieeieetrieesee et e st e s et s e sraeessreesaree s sressssseesssseesasseesareessare oe 6
B) MILESTONE 2 — BDOMS TIMING LOOP.ceeeeeeeeeeeeuetuunnnimmeesseessssssesssssssssssssasaaeaeaaaaaaaaaseeerereeesnnnnnnnns 7
C) MILESTONE 3 —SCALING TO 3 DIGIT ASCI ...ciiiiiieiiiiiis e eeee s s e s e s e e e s e s e eeeeeeaeeaesenesnsnensnnnnes 9
D) MILESTONE4 —OUTPUT TOLC DISFLAYiiiiiiiiiieeitiiii e sttt eeeaeaaaaaaaaaaaaaaaeaeeees 10
(OO 1\ [I 1] 11
F N N 5 5, T 12
E) THE COMPLETE CODEccoiiiiiuiutttttetteeeeenaasssteeeeeaaeessaanssteseesmnesseeeaaeesesansssteeeeaaeaaaeeeaessaaansnsseneaeaeens 12

Page 2 of 15

2. Introduction

Microeledronicsisincreasingly pervading all aspeds of industry, educaion and the home. A
leading example of microelectronic techniques is the microprocesor, and as its use increases
the nead for knowledge and understanding will also grow.

The microprocessor lab was designed to give an overview over the programming of such a
microprocesor system. Therefor a Digital Voltage Meter was to implement onthe UELMON
51.

3. TheProject

With the UELMON system a digital voltmeter with the foll owing spedficaions wasto
implement:

¢ Inpu VoltageRange: 0..5Volts
¢+ Display: 2% dgits
¢ Refresh Rate: 500ms +/- 1ms

The projed was divided into 5 dfferent sedions (Mil estones). These sections were &
follows:

Sedion 1
Real datafrom AD conwverter and write it to DA for determination d dynamic range and I/P -
O/P relationship of the DA and AD.

Sedion 2

Implement a 500ms timing loop, for reducing the sample rate to 2 (2 samples per second).
S

Sedion 3
Conwert the hexadedmal data from the AD converter to 3ASCII digits.

Sedion 4
Write the onverted ASCII datato the LCD.

Sedion 5
Refinements.

Page 3 of 15

4. TheMain program

First an owerall flowchart of the voltmeter program was developed. It puts the diff erent task
into a dirondogicd order. First the gplied vdtage hasto be mnverted to adigital value and
written to the DAC. Then the hexadecima ADC value has to be wnverted to a3 dgit ASCII,
which can be written to the LC-Display. Then the program has to wait until the 500ms are
finished. Therefore the timer has to be started before reading from the ADC.

Figure 1 shows the resulting flowchart.

Init / Start

Get ADC Input Icall getadc

Write to DAC

Convert Hex ADC
I/P to Decimal
(Scaling)

Display Voltage on
LC-Display

Icall display

Wait until timer has
reached 500ms

figure 1 - The main program (Overall flowchart)

Page 4 of 15

5. TheLab

a) Milestonel —Read from ADC and writeto DAC

First sedion d the Lab was to implement a short program, which was able to read the mntent
of the Analogue to Digital Converter and write it to the Digital to Analogue Conwerter.

The I/P value was always printed onthe screen viathe pint8u function o the UELMON.
Pint8u prints automaticdly the adual content of the Accumulator to the serid interface g a
deamal number (0..25).

Later the program was divided into the subroutines GETADC and WRTDAC, which are
cdled from the main program.

i. Read from A/D converter
Subroutine
GetADC

Initialise AD-
Converter

MOV DPTR, #A_D
MOV a, #0
MOVX @DPTR, a

_/—\
_/—\

WAIT:
JB P3.2, WAIT

\/\
\/\

MOVX a, @DPTR

\/\
\/\

RET

\/\

Load converted
value to Accu

figure 2 - Subroutine GetADC

Figure 2 shows the flowchart for the subroutine, which reads from the ADC and writes it to
the Accumulator.

The resulting codeis shown onthe right hand side of the flowchart.

The A/D hasto be started by writing adummy value to it, and then the program wait until the
conversionis dore and writes the resulting value to the Accu.

Page 5 of 15

ii. Writeto D/A converter

Asanext part of the first sedion the read value of the A/D had to be written to the D/A
converter and the dharaderistics of both were to be obtained.

Subroutine
WRTDAC

Write Accu to
DAC

_/—\

MOV DPTR, #D_A
MOVX @DPTR, a

/\
/\

RET

figure 3 —Subroutine Writ to DAC

iii. AD and DA converter characteristics

Input to ADC/V Screen Out (Dec- Output of DA/V

0..255
0
1
16

52

104
156
207/208
254
254255
255

From this table the charaaeristics of the ADC and DAC can be obtained:

ADC:
Resolution="12XVOIRe_ 4 Range 0.4.92v
stepsize

Quantisatn error= Re%lutlon =10mV

(4.90V0O 254dec.
-4.92V[] 255dec.
=20mV)

Page 6 of 15

DAC:

0..255 (Range0..2.55V)
0..2.55v0 Resolutionzf%/ =10mV

QErr = RTeS =smV

b) Milestone 2 — 5Mmstiming loop

For sampli ng the incoming voltage with a sampling rate of ¥2 secondthe program must
provide atimer, which is garted before reading from the ADC and lelts the program, urtil
500ms are dore and the next inpu value can bereal.

The 500ms timing loop consists of a) The ISR (Figure 4) and b) an external courter routine
(Figure5).

Thetimer is darted before the ADC starts to work and is prel oaded with a defined value. If
the timer overflows the 8051 generates an interrupt, which forces the program to continue &
the aldressof the interrupt vector (UELMON=08b). With every overflow a second \ariable
(n) is deaemented and the timer again set to the defined value. When the hel ping courter n
has reached 0,the program starts continuing at the beginning.

ISR (Interrupt
Service Routine)

Set new Timer mov thO, #prehigh
value mov tl0, #prelow
Start timer again setb tr0
Decrement
overflow counter decn
(n) \—/\
figure 4- ISR

Page 7 of 15

Subroutine
Waitfiv

Overfglow
counter n=07?

waitfiv:
mov a, n

cjne a, #0, waitfiv

YES

figure 5 - Overflow counter routine

The overflow courter routine is cdled at the end d the main program in order to seaure a
proper timing.

Calculation of the Timer preset-value:

The Timer courts withou preset from 0 upto 65535and generates then an interrupt. For
these 65535courts the timer needs abou 65ms, which means for a delay of 500ms the timer

has to be restarted 500ms
65ms

=7.69 timesto provide 500ms delay.

Also thetimer can be restarted 8times, bu then it must be presetted by avalue, to dothe
same timing (500ms). Therefore the timer has nat to start with 0, kecause the timing loop
would increase 500ms (8*65ms= 520ms).

Hencethe wurter only shoud court 7'6923; 65536_ 6301E turns.

Proof:

8x63.015ms=504ms
O
8x62.5ms=500ms

O
TMRO: 0..62500counting

but TMRO courts up —Hence 6553662500=(303610

(30361=$0BDC I $0B=Highbyte and $DC=Lowbyte of TMRO

Page 8 of 15

c) Milestone3 —Scaling to 3digit ASCII

The LC-Display neads a3 digit valuein ASCII format to work corred. So the HEX value
coming from the ADC must be amnverted (scaled) in an appropriate way.

Subroutine
CONVERT (Hex
already in Accu)

Calculate MSD by
dividing accu 50

mov b, #50
div ab

Convert to ASCII
and store in R1

Calculate 1/10
Volts by dividing
remainder by 5

Convert to ASCII
and store in R2

Calculate 1/100
Volts by multiplying
remainder by 2

mov a, b
rla

Convert to ASCII
and store in R3

RET

figure 6

Figure 6 shows the flowchart of the scaling procedure. The different digits are stored in the
registers R1. R3.

Page 9 of 15

d) Milestone4 —Output to L C Display

Thelast part of the lab (Milestone 4) wasto dsplay the contents of the internal register
R1.R3 of the 8051in a “Voltage meter” appropriate form. The initi aisation routine for the
display was copied from the Lab-examples, because of the lack of documentation onthe
LCD.

The LC-Display is controll ed serial by port 3 of the 8255and the LCD dataare gplied via
port 2 of the 8355.To oltain a proper work of the display it hasto beinitialised in aspedal
way (subroutine INITL).

Subroutine
Display

Move cursor to mid
position, line 2

\—/—\

mov a, #$C5
Icall Icset

\/—\
\/\

mov a, rl
Icall Icdisp

\/\
/\

mov a, "'
Icall Icdisp

/\
/\

mov a, r2
Icall Icdisp

\-/_\
\—/—\

mov a, r3
Icall Icdisp

\—/—\
\—/—\

mov a, 'V'
Icall Icdisp

\—/—\

Display Volts

Display "." (Dot)

Display 1/10 Volts

Display 1/100 Volts

Display V' for Voltg

RET

figure 7 - Subroutine Display

Page 10 of 15

Figure 7 shows the subroutine to display the stored data onthe LC-Display. First the aursor is
moved to amid pasitionin the ssandrow viathe LCSET function, and then the registers are
output in the format #.#4V, likeonausua DVM.

6. Conclusion

The UELMON isamighty tod to develop and test programs for the Intel 8051 pocesor.
After assembling and simulating the @de it can be dired downloaded and tested on the
UELMON. With its implemented routines for accessng the seria port debugging and error
seaching is made very easy.

It isvery important to use asimulator for developing assembler code, because otherwise some
errors can't be found.

In atime, where microprocesrs beaome more and more important and arein usein every
day’slife every enginea shoud be aleto use them, because of their high flexibili ty.

Dirk Becker, dirk.becker@gmx.de, www.oldradio.home.pages.de

Page 110of 15

7. Appendix

e) The coomplete ade

; Read ADC Input
; Write it to serial and DAC, with a sampling rate of 1/2 second
; and convert it to decimals

Dirk Becker, 9801351, >= 1-MAR-1999

.EQU A _D,$E000 ; Set address of AD Converter
.EQU D_A,$C000 ; Set address of DA Converter
.EQU pint8u,$004D ; Set address of print ACC to serial
.EQU newline,$0048 ; Set address off serial CR/LF

.equ prelow, $dc ; Preload TMRO LowByte
.equ prehigh, $0b ; Preload TMEO HighByte
.equ n, $30 ; Overflow counter

. equ p8255, $4000 ; Address of the Port-Interface 8255

.org $8000
limp init
.org $800b ; ISR Start vector
isr: mov thO, # prehigh ; Presets TMRO High
mov tl0, # prelow ;and low byte
setb tr0 ; Starts TMRO again
decn ; Decrement helping counter
reti ; back and wait for next interrupt
init:
setb ea ; Enable interupts
setb etO ; with TMRO overflow interrupt
mov a, tmod ; (TMR1 must
anl a,#$f0 ; hot be
orl a,#%01 ; changed)
mov tmod, a ; and set to 16-Bit Counter mode
Icall initl ; Call LCD - Init
START:
mov thO, # prehigh ; Presets TMRO High
mov tl0, # prelow ;and low byte
setb tr0 ; Starts TMRO
mov n, #8 ; Set helping counter n to 8
Icall getadc ; Read ADC
Icall wrtdac ; write it to DAC
Icall convert ; convert it to ascii
Icall display ; and print it on the LCD
Icall waitfiv ; wait until 500ms are done
LIMP start ; Goto Start — forever

Page 12 of 15

. *kkkkkkkkkkhhhhhhhhhhhhhhrkkkkkkkkkkkhhkhkhhhhhhhhhhhhhrrikrriixkx
1

; * Subroutine GETADC *

; * Reads content from ADC and writes it to the accu *
= kkkkkkkkkhkkkkhkkkkkhkkkkhhkkkkhkhkkkkhhkhkkkhhkkkkkhkhkkkkhkhkkkkkhkkkkkk
getadc: MOV DPTR, #A D ; Set Datapointer to Adress of ADC
MOV A, #0 ; Load #0 to Acc
MOVX @DPTR, A ; load Acc to Address of ADC
WAIT: JB P3.2, WAIT ; Wait until End of Conversion (Port3,
Pin2)
MOVX A, @DPTR ; Load Result to Acc
; LCALL pint8u ; Print content of ACC to serial
; LCALL newline ; Send CR/LF to serial
ret
= kkkkkkkkhkkkkhkkkhkhkhkkkhkkhkhkhkkkhkhkhhkhkhkhhhkhkkhhhkhhhkhkkkhkhkhhkhkhkhhhkkhkhkhkhkkhikkkik
; * Subroutine WRTDAC *
; * Reads content from accu and writes it to the DAC *
= kkkkkkkkkhkkkkhkkkkkhkkkkhhkkkkhhkkkkhkhhkkkhhkhkkkkhhkkkkkhkhkkkkkhkhkkkkkhkkkx
wrtdac: MOV DPTR, #D_A ; Set Datapointer to Address of DAC
MOVX @DPTR, A ; Move Content of Acc to DAC for Output
ret
= kkkkkkkkkhkkkkkkkkkkhkkkkhhkkkhkhkhkkkkhkhhkkkhkhkkkkhkhkkkkkhkhkkkkkhkhkkkkkhkkkx
; * Subroutine WAIT *
; * Waits until 500ms are done *
= kkkkkkkkhkkkkhkhkhhkhkhkkkhkkhhkhkhkhkhkhkhkhkhkhkhhhkhkhhkhhkhhkhhkkhhkhkhhkhkhkkhhhhkhkhkhkhkkhikkkikx
walitfiv: mov a, n
cjne a, #0, waitfiv ~ ; are 500ms
ret ; done? - go back
= kkkkkkkkhkkkkhkhkkhkhkhkkkhkkhkhkhkkkhkhkhhkhkhkhhhkhkkhkhhkhhhkhkkkhkhhkhhkhkkhhhhkhhhkhkhikkkhkx
; * Subroutine Convert *
; * Converts the accu into decimals and stores the *
; * results intrl, r2and r3 (MSB ... LSB) *
= kkkkkkkkhkkkkhkhkhhkhkhkkkhkkhhkhkhkkkhkkhhkhkhkhhhkhkhhkhhkhhhkhkkkhkhkhhhkhhkhhhhkhhkhkhkhikkkkx
convert: mov b, #50 ; divide Accu
div ab ; by 50 - Remainder to register B
add a, #$30 ; convert accu to ASCII
mov rl, a ; and store it to R1 --> Volts
;LCALL pint8u ; Print content of ACC to serial
mov a, b ; divide remainder
mov b, #5 ; by 5
div ab
add a, #$30 ; convert accu to ASCII
mov r2, a ; store it in R2 --> 1/10 Volts
;LCALL pint8u ; Print content of ACC to serial
mov a, b ; Multiply remainder
rla ; by 2 --> 1/100 Volts
add a, #$30 ; convert accu to ASCII
mov r3, a
;LCALL pint8u ; Print content of ACC to serial
; Icall newline
ret ; done? - go back

Page 13 of 15

; * Subroutine Display *
; * Prints the content or R1 .. R3 to the LCD *
; *kkkkkkkkhkhkhkhhhkhkhhkhhhhhhkhhhhhhhhhkhhhhhhhhhhhhhkhhhhhhhhhhhrhhhhhiixk
display:
mov a, #$C5
Icall Icset

mov a, rl
Icall Icdisp

mov a,#".'
Icall Icdisp

mov a, r2
Icall Icdisp

mov a, r3
Icall Icdisp

mov a,#V'
Icall Icdisp

ret

skkkkkkkkkkkkkkkkkkkkkkhkkkhkkhkkkkkkhkkkkkhkhkkkkkx
1

; initialisation of LCD *
skkkkkkhkkkkhkkkkhkkkkhkkhkhkhkhkkhkhkhkkkhkhkhkhkhkhkhkkkhhhhhkikhkhkkx
1

initl:
mov dptr,#P8255+3 ;8255 setup register
mov a,#80h
movx @dptr,a ;port C is o/p
mov dptr,#setlcd
initl:
mov a,#0
movc a,@a+dptr
CJINE A #0,init2

ret
init2:
inc dptr
Icall LCset
[jmp initl

Page 14 of 15

skkkkkkkkkkkkhkhkkkkkkkkkkkkkkkhkhhhhhhhhhhhhhhhkkkkkkkkkkrkkhkhhhhhhhiix

; LCD write routines. LCdisp sends the (ASCII) char contained in A. *
; LCset sends the command contained in A *
; Note - The DPTR is preserved *

shkkkkkkkkkkkkhhkkhhkkkkkhhkhhhhhrrkkkkhhkhhhhhrrkkkkhhhhhhhrrkkkkhkhhhhix
1

Icdisp:
setb p1.5 ; setup for data
ajmp sendit
LCset:
clr p1.5 ; setup for command
sendit:
push dpl
push dph
mov dptr,#P8255+2 ;address of 8255 port ¢
movx @dptr,a ;send data to 8255
clr p1.6 ;write enabled
nop
nop
nop
setb p1.7 ;clock the data
nop
nop
nop
acall delay
clr pl.7
setb p1.6
acall delay
pop dph ;restore dptr, Note: last in
pop dpl ;is first out when using the stack
ret

delay: mov r0,#0FFh
djnz r0,*
ret

shkkkkkkkkkkkkhhkkhhkkkkkkhkhhhhhrrkkkkhhhhhhhrrkkkkhkhhhhhrrrikrkikx
1

setlcd:
. db $3C,$06,$0E,$01,$81,$81,$00

.end

Page 150of 15

